Writing Equations of Lines

I. How to Write an Equation of a Line Given m and b

- 1. <u>Write</u> down y = mx + b
- 2. <u>Substitute slope for m</u> and y-intercept for b.
- 3. <u>Simplify</u> the equation

Ex. 1 Slope is -5 and y-intercept is 2

Ex. 2 Slope is -1/2 and y-intercept is -2

Ex. 1 Slope is -5 and y-intercept is 2 y = -5x + 2

Ex. 2 Slope is -1/2 and y-intercept is -2 $y = -\frac{1}{2}x - 2$

Ex. 3 Slope is 0 and y-intercept is 3

Ex. 4 Slope is 1/3 and y-intercept is 0

Ex. 3 Slope is 0 and y-intercept is 3

y = 3

Ex. 4 Slope is 1/3 and y-intercept is 0 $y = \frac{1}{3}x$

II. How to Write an Equation of a Line Given a Graph

- 1. Write down y = mx + b
- 2. Use any 2 "good" points on the graph to find the slope, m.
- 3. Find the y-intercept on the graph, b.
- 4. <u>Substitute</u> slope for *m* and *y*-int for b into the equation y = mx + b.

III. How to Write an Equation of a Line Given m and a point

- 1. Write down y = mx + b.
- 2. Substitute slope for m and the point (x, y).
- 3. Solve for b.
- 4. Substitute m and b back into the equation.

Ex 13: m = 2 Point: (2, 3)

y = mx + b

3 = 2 (2) + b

b = -1

y = 2x - 1

Ex 14: m = 1/2 Point: (4,-3)

y = mx + b

-3 = 1/2 (4) + b

b = -5

$y = \frac{1}{2} x - 5$

Ex: 16 m = 4 (1,4)

Ex: 16 m = 4 (1,4)

Ex: 18 m = 2 (0,3)

Ex: 18 m = 2 (0,3)

Ex: 20 m = undefined (3,6)

Ex: 20 m = undefined (3,6)

IV. How to Write an Equation of a Line Given TWO points

- 1. Write down y = mx + b.
- 2. Use the slope formula to find *m*.
- Pick one of the ordered pairs & substitute slope for m and the point (x, y).
- 4. Solve for b.
- 5. Substitute m and b into the equation.

$\mathbf{y} = \mathbf{x} + \mathbf{1}$

- b = 1
- 3 = 1(2) + b
- y = mx + b

Ex: 21 (2, 3) (4, 5)
$$m = \frac{5-3}{4-2} = \frac{2}{2} = \frac{1}{2}$$

Equation of a Line - Given 2 points

Equation of a Line - Given 2 points Ex: 22 (2, 3) (-4, 15)

Equation of a Line - Given 2 points Ex: 22 (2, 3) (-4, 15) $m = \frac{15-3}{-4-2} = \frac{12}{-6} = -2$

y = -2x + 7

Equation of a Line - Given 2 points Ex: 23 (2, 2) (0, 4)

Equation of a Line - Given 2 points Ex: 23 (2, 2) (0, 4)

y = -x + 4

PARALLEL LINES

- <u>Graphs:</u> Lines Never Intersect and are in the same plane (coplanar)
- Equations:

Same Slopes Different y-intercepts

PERPENDICULAR LINES

- <u>Graphs</u>: Lines Intersect at right angles (90° angles)
- Equations:

Opposite (negative) Reciprocal Slopes

With the same or different y-int

Find the Opposite (negative) Reciprocal Slopes

3. 7

4. $-\frac{1}{9}$

Find the Opposite (negative) Reciprocal Slopes

1. $-\frac{2}{3}$ $\frac{3}{2}$ 2. $\frac{11}{12}$ $-\frac{12}{11}$

3. 7 $-\frac{1}{7}$

4. $-\frac{1}{9}$ 9

Are these lines parallel, perpendicular, or neither? 1. y = -2x + 1

$$y = -2x - 4$$

2. y = 3x - 4y = -3x + 1

3.
$$y = 1/5 x + 2$$

 $y = -5x + 6$

Are these lines parallel, perpendicular, or neither? 1. y = -2x + 1 parallel

1. y = -2x + 1 parallel y = -2x - 4

2.
$$y = 3x - 4$$
 neither
 $y = -3x + 1$

3.
$$y = 1/5 x + 2$$

y = -5x + 6
perpendicular

Are these lines parallel, perpendicular, or neither? 4. y = -2x + 1

$$y = -1/2x - 4$$

5. y = 3x - 4y = 1 + 3x

6.
$$y = 5/6 x + 2$$

 $y = -6/5 x + 6$

Are these lines parallel, perpendicular, or neither? 4. y = -2x + 1y = -1/2x - 4

5.
$$y = 3x - 4$$
 parallel
y = 1 + 3x

How to Write an Equation of a Line PARALLEL to another and given a point

- 1. Given equation should be solved for
 y (y = mx + b)
- 2. Write down the slope of that line
- 3. Substitute m and (x, y) in y = mx + b.
- 4. Solve for b.
- 5. Write the equation using m and b.

Write a line <u>parallel</u> to the line 2x + y = 3 and passes through the point (-2, 5).

Write a line <u>parallel</u> to the line 2x + y = 3 and passes through the point (-2, 5).

Write a line <u>parallel</u> to the line y = 3x - 5 and passes through the point (-5, -2).

Write a line <u>parallel</u> to the line y = 3x - 5 and passes through the point (-5, -2).

Write a line <u>parallel</u> to the line y = -4x + 1 and passes through the point (2, -1).

Write a line <u>parallel</u> to the line y = -4x + 1 and passes through the point (2, -1).

Write a line <u>parallel</u> to the line y = -x - 7 and passes through the point (-4, -4).

Write a line <u>parallel</u> to the line y = -x - 7 and passes through the point (-4, -4).

How to Write an Equation of a Line PERPENDICULAR to another and given a point

- 1. Given equation should be solved for
 y (y = mx + b)
- 2. Write down the OPPOSITE RECIPROCAL slope of that line
- 3. Substitute m and (x, y) in y = mx + b.
- 4. Solve for b.
- 5. Write the equation using m and b.

Write a line perpendicular to the line $y = \frac{1}{2}x - 2$ and passes through the point (1, 0).

Write a line perpendicular to the line $y = \frac{1}{2}x - 2$ and passes through the point (1, 0).

Write a line perpendicular to the line y = -3x + 2 and passes through the point (6, 5). Leave the equation in standard form. Write a line perpendicular to the line y = -3x + 2 and passes through the point (6, 5). Leave the equation in standard form.

Write a line perpendicular to the line 2x + 3y = 9 and passes through the point (6, -1).

Write a line perpendicular to the line 2x + 3y = 9 and passes through the point (6, -1).

Write a line perpendicular to the line y = 2x - 1 and passes through the point (2, 4).

Write a line perpendicular to the line y = 2x - 1 and passes through the point (2, 4).

Write a line <u>perpendicular</u> to

- the line $y = -\frac{1}{3}x + 2$ and passes
- through the point (5, 1). Leave
- the equation in standard form.

Write a line <u>perpendicular</u> to

- the line $y = -\frac{1}{3}x + 2$ and passes
- through the point (5, 1). Leave
- the equation in standard form.