Volume of

 Prisms
$\mathrm{V}=\mathrm{Bh}$

$B=$ area of BASE

(use different formulas according to the shape of the base)

h = HEIGHT of the solid

(distance from base to base)

EX: Find the volume.

EX: Find the volume.

$$
\mathrm{V}=12 \mathrm{in}^{3}
$$

EX: Find the volume.

EX: Find the volume.

$$
V=\left(\frac{1}{2} \cdot 3 \cdot 4 \cdot 12.5\right)+(4 \cdot 3 \cdot 12.5)
$$

$$
V=225 \mathrm{~cm}^{3}
$$

Volume of

 Cylinders
Volume of Cylinders

1. Volume of a Cylinder

(leave in terms of pi)

2. Volume of a Cylinder

(round to the nearest tenths)

$$
\begin{aligned}
& V=\pi r^{2} h \\
& V=\pi\left(13^{2}\right)(9) \\
& V=\pi\left(13^{2}\right)(9)
\end{aligned}
$$

$$
V=4,775.9 i n^{3}
$$

Volume of Pyramids

Volume of Pyramids

B stands for the area of the base

Find the volume and round to the nearest tenth.

$$
V=83.3 u^{\prime} i t s^{3}
$$

Find the volume and round to the nearest tenth.

Volume of
 > Cones

 Cones

 Cones}
Volume of Cones

$$
V=\frac{1}{3} \pi r^{2} h
$$

B stands for the area of the base and the base of a cone will ALWAYS BE A CIRCLE
h is the distance from vertex perpendicular to the base

3. Find the volume and round to

 the nearest tenth.2 mi

4. Find the volume and round to

 the nearest tenth.

5. Find the volume and round to

 the nearest tenth.

$$
V=\frac{1}{3}(\pi)(9)^{2}(12)
$$

$$
V=1017.9 \mathrm{~cm}^{3}
$$

6. Find the volume and round to

 the nearest tenth.

7. Find the volume of the

 composite figure.

8. Find the volume of the

 composite figure.

Surface Area \& Volume

of Spheres

If you cut a sphere right down the middle you would create two congruent halves called HEMISPHERES.

You can think of Earth.
The equator cuts Earth into the northern and southern hemisphere.

Look at the cross section formed when you cut a sphere in half.

What shape is it?

A circle!!! This is called the GREAT

> CIRCLE of the sphere.

Radius of a Sphere

Volume of a Sphere

Volume of a Sphere
(round to the nearest hundredths)

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& V=\frac{4}{3} \pi(2)^{3} \\
& V=33.51 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of a Sphere
(round to the nearest hundredths)

$V=\frac{4}{3} \pi r^{3}$

$V=\frac{4}{3} \pi(5)^{3}$

$V=523.60 \mathrm{~cm}^{3}$

The circumference of a great circle of a sphere is 25 inches. Find the volume of the sphere. (Round to the nearest hundredths.)

Ratio Relationships

a:b Ratio of the scale factor
a:b Ratio of the corresponding sides
a:b Ratio of the perimeters
$a^{2}: b^{2}$ Ratio of the area
$a^{3}: b^{3}$ Ratio of the volume

Volume of a Sphere

A spherical balloon has an initial radius of 5 in. When more air is added, the radius becomes 10 in . Explain how the volume changes as the radius changes.

$5: 10$ or $1: 2$. So $1^{3}: \mathbf{2}^{3}$ means the volume would be 8 times as much.

Volume of a Sphere

A sphere has an initial volume of $400 \mathrm{~cm} .^{3}$ The sphere is made bigger by making the radius 4 times as big. What is the new volume of the sphere?

1:4
So, $1^{3}: 4^{3}$ means the volume would be 64 times more volume.

64 times $400=$

Volume of a Sphere

A sphere is inscribed in a cube-shaped box as pictured below. To the nearest centimeter, what is the volume of the empty space in the box?

$$
\begin{aligned}
& V_{\text {sphere }}=\frac{4}{3} \pi(8)^{3} \\
& V_{\text {cube }}=(16)^{3}
\end{aligned}
$$

$V_{\text {empty space }}=16^{3}-\left(\frac{4}{3} \pi(8)^{3}\right)$

$V_{\text {empty space }}=1951 \mathrm{~cm}^{3}$

These have the same base and same height.

Therefore, they have the same volume.

These have the same base (radius) and same height.

Therefore, they have the same volume.

These have the same base and same height.

Therefore, they have the same volume.

