

THE

IS , APRIL 26.

*Converting between Logarithmic and Exponential Expressions.
*Evaluating Logarithmic Expressions.
*Simplifying Logarithmic Expressions.
*Solving Exponential and Logarithmic Equations.
*Characteristics of Log Functions

EXPAND:

1. $\log (6 \cdot 11) \quad$ 2. $\log \left(3 x^{4}\right)$

3. $\log \frac{x}{y^{6}}$

CONDENSE:
4. $\log 3-\log 8 \quad$ 5. $\log 3+4 \log x \quad$ 6. $\ln a+4 \ln b-\ln 7$
https://app.classkick.com/\#/login/DTJUSJ

EXPAND:

1. $\log (6 \cdot 11)$
2. $\log \left(3 x^{4}\right)$
3. $\log \frac{x}{y^{6}}$ $\log 6+\log 11$ $\log 3+4 \log x$
$\log x-6 \cdot \log y$

CONDENSE:

4. $\log 3-\log 8 \quad$ 5. $\log 3+4 \log x$ $\log \frac{3}{8}$
 $$
\log 3 x^{4}
$$
 6. $\ln a+4 \ln b-\ln 7$
 $$
\ln \frac{a b}{7}
$$

WARM-UP

Warning! Be atrofillil

$\log (x+y) \neq \log x+\log y$

$$
\log (x-y) \neq \frac{\log x}{\log y}
$$

$\log (x+y) \neq \log x \cdot \log y$

Problem 1

- Which of the following logarithms is equal to $4 \log _{5} 2-\log _{5} 4+\log _{5} 10$?
A) $\log _{5} 4$
B) $\log _{5} 12$
C) $\log _{5} 16$
D) $\log _{5} 40$

Problem 2

- Which of the following logarithms is equal to $\log 12 b-\log 4 c ?$
A) $\log \frac{b}{3 c}$
B) $\log \frac{3 b}{c}$
C) $\log 9 b c$
D) $\log 3 b c$

Problem 3

- Which expresses the following difference of logarithms as a single logarithm?

$$
4 \log 2-5 \log y
$$

A) $\log \frac{16}{\frac{y}{5}}$
B) $\log \frac{16}{5 y}$
C) $\log 16 y^{5}$
D) $\log 80 y$

Problem 4

- Write as a sum, difference, or multiple of logarithms: $\log _{b} \frac{x^{2} y^{4}}{w^{\frac{1}{3}}}$

$$
2 \log _{b} x+4 \log _{b} y-\frac{1}{3} \log _{b} w
$$

Problem 5

- Write as a logarithm of a single quantity: $\log _{3}(x-4)+\log _{3}(x+4)$

$$
\log _{3}\left(x^{2}-16\right)
$$

Problem 6

-Find the value of $\mathrm{x}: \quad 4 \cdot 3^{x-1}=728$

$$
x=\log _{3} 182+1
$$

Problem 7

- Convert each of the following expressions:
A) $\log a=6 \quad a=10^{6}$
B) $\ln y=5 \quad y=e^{5}$
C) $4^{x}=64 \quad \log _{4} 64=x$
D) $e^{2 x}=37 \quad \ln 37=2 x$

Problem 8

-Which expression(s) is equivalent to $\log _{4} 9 ?$
A) $9 \log 4$
B) $\frac{\log 9}{\log 4}$
C) $\frac{\log 4}{\log 9}$
D) $\frac{\ln 9}{\ln 4}$

Problem 9

- Evaluate the following: $\log _{\frac{1}{2}} 9$

-3.1699

Problem 10

-The function $f(t)=4000(1.002)^{t}$ can be used to determine the value of a savings account t months after it was opened with an initial investment of $\$ 4000$. How many months will it take for the balance to reach $\$ 4,100$?

It will take approximately 12 months for the balance to reach $\$ 4,100$.

Applying Logarithms to the Real World

Problem 11

- The pH of a chemical solution is modeled by the equation, $p(t)=-\log t$, where t is the concentration of hydronium ions in moles per liter. Pure water has a pH of 6.52. What is the hydronium ion concentration of pure water? (Write in exponential form:)

The hydronium ion concentration of pure water is $10^{-6.52} \mathrm{~mol} / \mathrm{l}$.

STEPS:

1. Get the LOG, LN, or e expressian alone.

2. Convert to the apposite form. Logarithmic ---> Exponential Exponential ---> Logarithmic
3. Simplify.
4. Solve far x .

Solving Equations

Example

Solve: $3^{x+1}=5$

STEPS:
I. Get the LIG, LN, OR e expression alone.
2. Convert to the opposite form.
Logarithmic ---> Exponential
Exponential ---> Logarithmic
3. Simplify.
4. Solve for x.

Solving logarithmic equations

Example:

Solve: $3^{x+1}=5$

STEPS:
I. Set the LOC, LN, ㄴR e expression alone.
2. Convert to the opposite form.
Logarithmic ---> Exponential
Exponential ---> Logarithmic
3. Simplify.
4. Solve for x.

Solving Equations

Example:

Solve: $e^{x-1}=10$

STEPS:
I. Get the LIG, LN, OR e expression alone.
2. Convert to the apposite form.
Logarithmic ---> Exponential
Exponential ---> Logarithmic
3. Simplify.
4. Solve for x.

Solving logarithmic equations

Example 12:

Solve: $\mathrm{e}^{\mathrm{x}-1}=10$

STEPS:

1. Get the LOG, LN, QR e expression alone.
2. Convert to the opposite form.

Logarithmic ---> Exponential
Exponential ---> Logarithmic
3. Simplify.
4. Solve for x .

Problem 12

-Solve for $\mathrm{x}: 2^{4 x}=16$

Problem 13
Solve for x :

$$
4 e^{2 x}-3=13
$$

Problem 14

-Solve for $\mathrm{x}: \quad \log _{7}(6 x-16)=\log _{7}(x-1)$

Problem 15

Solve for $\mathrm{x}: \ln (7+2 x)=\ln (3 x+3)$

$$
x=4
$$

Problem 16

-Solve for $\mathrm{x}: \log _{2}\left(5 x^{2}+2 x\right)=\log _{2}\left(2 x^{2}+8\right)$

$$
x=\frac{4}{3} \quad x=-2
$$

$$
\begin{aligned}
& \text { CHECK } \\
& \square \text { mion }
\end{aligned}
$$

Problem 15

Solve for $\mathrm{x}: \ln (7+2 x)=\ln (3 x+3)$

$$
x=4
$$

$$
\begin{aligned}
& \text { CHECK } \\
& \hline \text { mion }
\end{aligned}
$$

Problem 17

Solve for $\mathrm{x}: \log _{3} 2 x+9=3$

$x=9$

Problem 18
-Solve for X : $\log _{6}(x-9)+\log _{6} x=2$
$x=12$

