What is the difference between a factor and a solution? Factor Solution

Solving Quadratic Equations

Solving a Quadratic Equation ak.a. Finding the Roots a.k.a. Finding the Zeros a.k.a. Finding the X-Intercepts

How to Solve Quadratic Equations by Factoring

- STEP 1: Factor
- STEP 2: Set each factor equal to 0.
- STEP 3: Solve for the variable.
- STEP 4: Check your answers.

Ex. 1: Solve the equation $x^2 + x - 6 = 0$ STEP 1: Factor (x - 2)(x+3) = 0

STEP 2: Set each factor equal to 0. x-2=0 and x+3=0

STEP 3: Solve for x.

$$x-2=0$$
 $x+3=0$
 $x=2$ $x=-3$

STEP 4: Check your answers. $x^{2} + x - 6 = 0$ 4 + 2 - 6 = 00 = 0

$$x^{2} + x - 6 = 0$$

9 - 3 - 6 = 0
0 = 0

Ex. 2: Solve the equation $x^2 + 10x + 25 = 0$ STEP 1: Factor (x + 5)(x + 5) = 0

- STEP 2: Set each factor equal to 0. x+5 = 0 and x+5 = 0
- STEP 3: Solve for x.

$$x+5=0$$
 $x+5=0$
 $x = -5$ $x = -5$

Don't write it twice!!!

STEP 4: Check your answers. $x^{2} + 10x + 25 = 0$ 25 - 50 + 25 = 00 = 0

EX 3: $5x^2 + 8x = 0$ STEP 1: Factor x(5x+8) = 0

x = 0

STEP 2: Set each factor equal to 0.

STEP 3: Solve for x.

x = -

5x + 8 = 0

EX 4: Find the x-intercepts of $2x^2 + 7x = 0$.

STEP 1: Factor
$$x(2x+7) = 0$$

STEP 2: Set each factor equal to 0.

$$(x=0) 2x+7=0$$

STEP 3: Solve for x.

Find the x-intercepts: (Solve)

1)
$$x^2 - 2x - 3 = 0$$

x = 3 and x = -1
2) $x^2 - 2x = 0$
x = 0 and x = 2

3)
$$x^2 - 8x + 12 = 0$$

x = **2** and **x** = **6**

Standard Form

of a

Quadratic Equation

$ax^2 + bx + c = 0$

If the Quadratic Equation is NOT in Standard Form PUT THE EQUATION IN STANDARD FORM FIRST.

ON YOUR OWN:

Find the x-intercepts of $x^2 - 4x + 2 = -1$

$$|x=3| \qquad \qquad x=1$$

Find the x-intercepts of $x^2 - 4x = -3x + 3$ x = 3 x = -1

Solving Quadratic Equations by finding Square Roots

STEPS:

Get x squared by itself. Take the square root of both sides of the equal sign.

There will be a positive answer and a negative answer.

Let's look at some examples where x² is already by itself.

Examples. Solve the equation. Write the solutions as integers if possible. Otherwise, write them as radical expressions.

$$1. x^2 = 4$$

$$\sqrt{x^2} = \sqrt{4}$$

$$x = \pm 2$$

2. $n^2 = 5$ $\sqrt{n^2} = \sqrt{5}$

 $n = \pm \sqrt{5}$

Here, all we have to do is take the square root of both sides.

ON YOUR OWN: 1. $x^2 = 81$ 2. $y^2 = 11$ 3. $c^2 = 25$ 4. $x^2 = 10$

$$x = \pm 9$$
 $y = \pm \sqrt{11}$ $c = \pm 5$ $x = \pm \sqrt{10}$

Let's look at some examples where x² is NOT by itself.

We must solve to get x² by itself 1st! $3x^2 - 48 = 0$ $3x^2 = 48$ divide by 3 take the square $x^2 = 16$ root of both sides x = +4

ON YOUR OWN:

$$x^2 - 1 = 0$$

 $2x^2 - 72 = 0$ **X** = ±6

 $x^2 - 79 = 2$

 $6x^2 = 150$

SPECIAL SOLUTIONS

$$1. x^2 = 0$$

 $\sqrt{X} = \sqrt{0}$

$$x = \pm 0$$
$$x = 0$$

The only solution is zero b/c zero is not positive or negative!

$$2. x^2 = -1$$
$$\sqrt{x^2} = \sqrt{-1}$$

Plug this in your calculator. What do you get????

Therefore, there is NO REAL SOLUTION b/c the square of a number is NEVER negative