What is the difference between a factor and a solution?

 Factor \quad Solution
Solving Quadratic Equations

Solving a Quadratic Equation

 ak.a. Finding the Roots a.k.a. Finding the Zeros a.k.a. Finding the X-Intercepts
How to Solve Quadratic Equations by Factoring

STEP 1: Factor
STEP 2: Set each factor equal to 0 .
STEP 3: Solve for the variable.
STEP 4: Check your answers.

Ex. 1: Solve the equation $x^{2}+x-6=0$ STEP 1: Factor $(x-2)(x+3)=0$ STEP 2: Set each factor equal to 0 .

$$
x-2=0 \text { and } x+3=0
$$

STEP 3: Solve for x.

$$
\begin{array}{rr}
x-2=0 & x+3=0 \\
x=2 & x=-3
\end{array}
$$

STEP 4: Check your answers.

$$
\begin{array}{rlr}
x^{2}+x-6 & =0 \\
4+2-6 & =0 \\
0 & =0
\end{array}
$$

Ex. 2: Solve the equation $x^{2}+10 x+25=0$ STEP 1: Factor $(x+5)(x+5)=0$ STEP 2: Set each factor equal to 0 .

$$
x+5=0 \text { and } x+5=0
$$

STEP 3: Solve for x.

$$
\begin{array}{ll}
x+5=0 & x+5=0 \\
x=-5 & x=-5
\end{array}
$$

STEP 4: Check your answers.

$$
\begin{array}{r}
x^{2}+10 x+25=0 \\
25-50+25=0 \\
0=0
\end{array}
$$

EX 3: $5 x^{2}+8 x=0$

STEP 1: Factor $x(5 x+8)=0$

STEP 2: Set each factor equal to 0 .

$$
x=0 \quad 5 x+8=0
$$

STEP 3: Solve for x .

$$
x=-\frac{8}{5}
$$

EX 4: Find the x -intercepts of $2 \mathrm{x}^{2}+7 \mathrm{x}=0$. STEP 1: Factor $x(2 x+7)=0$ STEP 2: Set each factor equal to 0 .

$$
x=0 \quad 2 x+7=0
$$

STEP 3: Solve for x .

$$
x=-\frac{7}{2}
$$

Find the x-intercepts: (Solve)

$$
\begin{array}{ll}
\text { 1) } x^{2}-2 x-3=0 & \text { 2) } x^{2}-2 x=0
\end{array}
$$

$$
\mathbf{x}=3 \text { and } \mathbf{x}=-1
$$

$x=0$ and $x=2$
3) $x^{2}-8 x+12=0$
$x=2$ and $x=6$

Standard Form

of a

Quadratic Equation

If the Quadratic Equation is NOT in Standard Form PUT THE EQUATION IN STANDARD FORM FIRST.

$$
\begin{gathered}
\text { EX 5: } x^{2}-1=5 x-5 \\
x^{2}-5 x+4=0 \\
(x-4)(x-1)=0 \\
x-4=0 \quad x-1=0 \\
x=4 \quad x=1
\end{gathered}
$$

EX 6: $\quad x^{2}-4=2-x$

$$
\begin{gathered}
x^{2}+x-6=0 \\
(x+3)(x-2)=0 \\
x=-3 \quad x=2
\end{gathered}
$$

ON YOUR OWN:

Find the x-intercepts of $x^{2}-4 x+2=-1$

$$
x=3 \quad x=1
$$

Find the x-intercepts of $x^{2}-4 x=-3 x+3$

$$
x=3 \quad x=-1
$$

Solving Quadratic

Take the sijuare

root of both sides of the equal sign.

There will be a positive

answer and a negative answer.

Let's look at some

 examples where x^{2} is already by itself.Examples. Solve the equation. Write the solutions as integers if possible. Otherwise, write them as radical expressions.

$$
\begin{array}{ll}
\text { 1. } \begin{array}{ll}
x^{2}=4 & 2 . n^{2}=5 \\
\sqrt{x^{2}}=\sqrt{4} & \sqrt{n^{2}}=\sqrt{5} \\
x= \pm 2 & n= \pm \sqrt{5}
\end{array} \text { n } \quad n= \pm \begin{array}{l}
\\
x
\end{array} & n= \pm
\end{array}
$$

Here, all we have to do is
take the square root of hoth sides.

ON YOUR OWN:

$$
\begin{array}{llll}
\text { 1. } x^{2}=81 & \text { 2. } y^{2}=11 & \text { 3. } c^{2}=25 & \text { 4. } x^{2}=10
\end{array}
$$

$$
x= \pm 9 \quad y= \pm \sqrt{11} \quad c= \pm 5 \quad x= \pm \sqrt{10}
$$

Let's look at some examples where x^{2} is NOT by itself.

We must solve to get x^{2} by itself $1^{\text {st! }}$

$$
\begin{aligned}
& x^{2}+32=96 \text { \&undicich } \\
& x^{2}=64
\end{aligned}
$$

$x= \pm 8$

We must solve to get x^{2} by itself $1^{\text {st! }}$

$$
3 x^{2}-48=0 \quad \text { Bid } 48
$$

$$
3 x^{2}=48
$$

$x^{2}=16$

$x= \pm 4$ rootothoth sidge

ON YOUR OWN:

$x^{2}-1=0$
$x= \pm 1$

$$
2 x^{2}-72=0
$$

$x= \pm 6$

$$
x^{2}-79=2
$$

$$
x= \pm 9
$$

$6 x^{2}=150$
$x= \pm 5$

SPECIAL SOLUTIONS

$$
\begin{aligned}
& \text { 1. } x^{2}=0 \\
& \sqrt{x^{2}}=\sqrt{0} \\
& x= \pm 0 \\
& x=0
\end{aligned}
$$

The only solution is zero b/c zero is not positive or negative!

$$
\text { 2. } \begin{aligned}
& x^{2}=-1 \\
& \sqrt{x^{2}}=\sqrt{-1}
\end{aligned}
$$

Plug this in your calculator. What do you get?????

Therefore, there is NO REAL SOLUTION b/c the square of a number is NEVER negative

