WARM-UP

Write sentences to describe the end behavior of each polynomial:

$$
\begin{array}{ll}
\# 2: & f(x)=5 x^{5}+2 x^{3}+5 x+7 \\
\# 3: & f(x)=-2 x^{4}+4 x^{2}-5
\end{array}
$$

WARM-UP

Write sentences to describe the end behavior of the polynomial:

\#1:
 UP, UP

"On the left side, the arm points down." *Translation: As $x \rightarrow-\infty, y \rightarrow+\infty$.
"On the right side, the arm points up." *Translation: As $\mathrm{x} \rightarrow+\infty, \mathrm{y} \rightarrow+\infty$.

WARM-UP

Write sentences to describe the end behavior of the polynomial:

\#2: $f(x)=5 x^{5}+2 x^{3}+5 x+7$ ODD POSITIVE

DOWN, UP

"On the left side, the arm points down." *Translation: As $x \rightarrow-\infty, y \rightarrow-\infty$.
"On the right side, the arm points up." *Translation: As $\mathrm{x} \rightarrow+\infty, \mathrm{y} \rightarrow+\infty$.

WARM-UP

Write sentences to describe the end behavior of the polynomial:

$$
\begin{array}{r}
\text { \#3: } f(x)=-2 x^{4}+4 x^{2}-5 \\
\text { EVEN NEGATIVE }
\end{array}
$$

DOWN, DOWN

"On the left side, the arm points down." *Translation: As $x \rightarrow-\infty, y \rightarrow-\infty$.
"On the right side, the arm points down."
*Translation: As $\mathrm{x} \rightarrow+\infty, \mathrm{y} \rightarrow-\infty$.

Use Synthetic Division to divide

$$
x^{4}-10 x^{2}-2 x+4 \text { by }(x+3)
$$

$$
\begin{aligned}
-3 & \left\lvert\, \begin{array}{ccccc}
1 & 0 & -10 & -2 & 4 \\
\downarrow & -3 & 9 & 3 & -3 \\
\hline & 1 & -3 & -1 & 1
\end{array}\right. \\
& 1
\end{aligned} \text { remainder }
$$

$$
\left(x^{3}-3 x^{2}-x+1\right)+\frac{1}{x+3}
$$

Solving Polynomial Equations

Determining if a Binomial is a Factor of a Polynomial

What makes a number a factor of another number?
**If the number can go into the other number evenly.
**When you divide the numbers, there is NO REMAINDER.

This Also Applies to Polynomials ...

**Use synthetic division to divide the polynomials.
**If the remainder is 0 , then the binomial is a factor of the polynomial.

EX 1: Is $(x+2)$ a factor of $f(x)=3 x^{3}-x^{2}+2 x-4$?

$$
-2 \begin{array}{cccc}
-2 & \left\lvert\, \begin{array}{cccc}
3 & -1 & 2 & -4 \\
\downarrow & -6 & -14 & -24 \\
\hline & 7 & -12 & -28
\end{array}\right.
\end{array}
$$

$3 x^{2}+7 x-12-28 / x+2$

NO! There is a remainder.

Solving Polynomial Equations

Factoring Polynomial Functions

How to Factor Polynomials Given 1 Factor (or Zero)?

STEP 1: Use synthetic division to divide the polynomials. STEP 2: Factor the quotient using the best method.

If $(x-1)$ is a factor, find the other factors of $g(x)=3 x^{3}+8 x^{2}-3 x-8$

$$
\begin{aligned}
& x-1=0 \\
& x=1 \\
& 1 \\
& 3 x^{2}+11 x+8 \quad \text { FACTOR using Kickback! } \\
& (x+1)(3 x+8)
\end{aligned}
$$

$$
\text { factors: }(x-1)(x+1)(3 x+8)
$$

Factor $P(x)=x^{3}-12 x^{2}+12 x+80$, given that one of the zeros of the function is $x=10$. Then, identify the solutions of the function.

STEP 1: Use Synthetic Division using 10 as the zero:

STEP 2: FACTOR using X-Method!

$$
P(x)=(x-4)(x-2)(x-10)
$$

$$
(x-4)(x-2)
$$

STEP 4: Set each factor $=0$. Solve for x.

$$
\begin{array}{ccc}
x-4=0 & x-2=0 & x-10=0 \\
x=4 & x=2 & x=10
\end{array}
$$

Solving Polynomial Equations

Solving Polynomial Equations

 (from SGRATGH)

How Do I Factor or Find the Solutions of a Polynomial if I am NOT Given a Factor?

First, find the POSSIBLE Roots!

To Find the Zeros (Solutions) of a Polynomial From Scratch ...

- Use the Rational Root Theorem:
* This theorem gives the possible zeros when the factor is not given.

- Where p is the constant, and q is the leading coefficient.

EX 3: Determine all possible rational roots(zeros):

$$
f(x)=8 x^{3}-6 x^{2}-23 x+6
$$

-What is the constant?

- What is the leading coefficient?
-What are the possible rational roots?

Possible $=P \quad \pm$ factors of constant term
 Zeros $q= \pm$ factors of leading coefficient

$$
\pm 1 / 8,1 / 4,1 / 2,3 / 8,3 / 4,1,3 / 2,2,3,6
$$

1.Use the Rational Root Theorem to narrow down your choices for possible zeros.
2.Use Synthetic Division to test a root. Repeat until you find one that works.
3.Factor the quotient.
4.Set each factor equal to zero and solve for x .

