Simplifying Fractions

Reduce the numbers and subtract the exponents.
Where the larger one is, is where the answer goes.
Simplify each fraction:

1. $\frac{14}{98}$
2. $\frac{45}{60}$
60
3. $\frac{x^{5}}{x^{2}}$

$$
\text { 4. } \frac{y^{2}}{y^{3}}
$$

$$
\text { 5. } \frac{25 x^{6}}{30 x^{3}}
$$

$$
\text { 6. } \frac{24 x y^{4}}{6 x^{3} y^{2}}
$$

Warm-Up

Simplify each fraction:

$$
\begin{aligned}
& \text { 1. } \frac{14}{98}=\frac{1}{7} \\
& \begin{array}{ll}
\text { 2. } \frac{45}{60}=\frac{3}{4} & \text { 3. } \frac{x^{5}}{x^{2}}=x^{3} \\
\text { 4. } \frac{y^{2}}{y^{3}}=\frac{1}{y} & \text { 5. } \frac{25 x^{6}}{30 x^{3}}=\frac{5 x^{3}}{6}
\end{array} \\
& \text { 6. } \frac{24 x y^{4}}{6 x^{3} y^{2}} \\
&
\end{aligned}
$$

Simplest Form

When a rational expression's numerator and denominator have no factors in common (other than 1).

STEPS:

1) Factor
2) Simplify by Canceling and/or Reducing.

1. Simplify a Rational Expression

$18 x^{2}$

Reduce the numbers and subtract the exponents.

Where the larger exponent is, is where the answer goes.

3
 $10 x$

2. Simplify a Rational Expression

$$
\frac{x^{2}-6 x}{3 x^{2}}=\text { Factor the top }
$$

$$
\frac{x(x-6)}{3 x^{2}}=\begin{aligned}
& \text { Cross out the } \\
& \text { common factor } x .
\end{aligned}
$$

$$
\frac{(x-6)}{3 x}
$$

3. Simplify a Rational Expression $3 x$
$\frac{3 x}{4 x+x^{2}}=$ Factor the bottom $\frac{3 x}{x(4+x)}=\begin{aligned} & \text { Cross out the } \\ & \text { common factor } \mathrm{x} .\end{aligned}$

$$
\frac{3}{(4+x)}
$$

4. Simplify a Rational Expression

$$
\frac{5 x-10 x^{2}}{15 x}=\quad \text { Factor the top }
$$

$5 x(1-2 x) \quad$ Cross out the common $15 x-$ factors of 5 and x.

$$
\frac{(1-2 x)}{3}
$$

5. Simplify a Rational Expression
$x^{2}-16$
Factor the top and bottom
$3 x+12$

$$
\frac{(x+4)(x-4)}{3(x+4)}=\begin{aligned}
& \text { Cross out the common } \\
& \text { factor }(x+4)
\end{aligned}
$$

$$
\frac{(x-4)}{3}
$$

Recognize Opposite

 FactorsWhen you have opposite factors, you will have to factor out a negative so that you can cancel.

6. Opposite Factors

$$
\begin{aligned}
& \frac{1-x}{x^{2}+2 x-3}= \\
& \frac{(1-x)}{(x+3)(x-1)}= \\
& \frac{-(x-1)}{(x+3)(x-1)}=
\end{aligned}
$$

Factor the bottom

$$
(1-x) \text { on the top and }
$$ ($\mathbf{x}-1$) on the bottom are opposites. Factor out a negative so they will cancel.

$$
-1
$$

$$
(x+3)
$$

Practice \#1

$$
\begin{aligned}
\frac{x-3}{x^{2}-9} & =\frac{x-3}{(x+3)(x-3)} \\
& =\frac{1}{(x+3)}
\end{aligned}
$$

Practice \#2

$$
\frac{2 x-6}{4}=\frac{1}{4}(x-3) x_{2}^{2}
$$

Practice \#3

$$
\frac{5 x}{10 x^{2}-5 x}=\frac{5 x}{15 x(2 x-1)}=
$$

Practice \#4

REIMEIMBER ...

Reduce the numbers and subtract the exponents. Where the larger one is, is where the answer goes.

Practice \#5

$$
\frac{p^{3}-p^{2}}{p^{2}}=
$$

$p-1$

Excluded Values

**Values for x that make the denominator $=0$.

STEPS:

1) Factor the denominator.
2) Set each factor in the denominator $\neq 0$.
3) Solve.

EX: $\frac{12 x^{2}}{6 x}=$

$6 x \neq 0$ 66

$$
x \neq 0
$$

Excluded Values

**Find the excluded values:

EX:

$$
\begin{array}{cc}
\frac{2 x}{2 x+10}=\frac{2 x}{2(x+5)} \\
\mathbf{2} \neq \mathbf{0} & \boldsymbol{x}+\mathbf{5} \neq \mathbf{0} \\
\boldsymbol{x} \neq-5
\end{array}
$$

