Vocabulary, Set Notation, and Venn Diagrams

Probability

- A number from 0 to 1
- As a percent from 0% to100%
- Indicates how likely an event will occur

Experiment

Any process or action that has observable results.

Example: drawing a card from a deck of cards is an experiment

Outcomes

Results from experiments

Example: all the cards in the deck are possible outcomes

Sample Space 13 213

- The set (or list) of all possible outcomes.
- Also known as the universal set
- Example: listing out all outcomes when rolling two dice

Event

- A subset of an experiment
- An outcome or set of desired outcomes

Example: drawing a single Jack of hearts

Set

List or collection of items

Subset Even #5. \{ 2,4,6\}

- List or collection of items all contained within another set
- □Denoted by A⊂B, if all the elements of A are also in B.

Empty Set 36 5 \$ \$

- A set that has NO elements
- □Also called a **null set**.
- Denoted by Ø

Union

- Denoted by U
- To unite

Everything in both sets

Intersection

- Denoted by
- Only what the sets share in common

Complement - NOT the

Denoted 2 different ways A' or A

Everything OUTSIDE of this set

Set Notation Handout

Set Notation	Pronunciation	Meaning	Venn Diagram
$A \cup B$	"A union B"	Everything in both sets	1 2 3
A∩B	"A intersect B"	Only what is in common with both sets	1 2 3
A or A'	"A complement"	Everything NOT in set A	1 2 3
(A∪B)'	"not A union B"	Everything NOT in set A and set B	1 2 3
(A ∩ B)'	" not A intersect B"	Everything NOT in common between set A and set B	1 2 3

Answer

B: The name begins with a vowel.

E: The name ends with a vowel.

1. Draw a venn diagram to represent this.

B: The name begins with a vowel.

E: The name ends with a vowel.

2. List the outcomes of B.

B: The name begins with a vowel.

E: The name ends with a vowel.

3. List the outcomes of E.

B: The name begins with a vowel.

E: The name ends with a vowel.

4. List the outcomes of $B \cap E$.

$$B \cap E = \{Alicia\}$$

B: The name begins with a vowel.

E: The name ends with a vowel.

5. List the outcomes of $B \cup E$.

B: The name begins with a vowel.

E: The name ends with a vowel.

6. List the outcomes of B'.

B: The name begins with a vowel.

E: The name ends with a vowel.

7. List the outcomes of $(B \cup E)$.

$$(B \cup E)' = \{Don\}$$

Tree Diagrams

- Tree diagrams
 allow us to see all
 possible outcomes
 of an event and
 calculate their
 probabilities.
- This tree diagram shows the probabilities of results of flipping three coins.

Multiplication Counting Principle (aka Fundamental Counting Principle)

At a sporting goods store, skateboards are available in 8 different deck designs. Each deck design is available with 4 different wheel assemblies. How many skateboard choices does the store offer?

Multiplication Counting Principle

A father takes his son Tanner to Wendy's for lunch. He tells Tanner he can get the 5 piece nuggets, a spicy chicken sandwich, or a single for the main entrée. For sides: he can get fries, a side salad, potato, or chili. And for drinks: he can get milk, coke, sprite, or the orange drink. How many options for meals does Tanner have?