

TRANSLATION

REFLECTION

ROTATION

SLIDES

TURNS

THE RIGID MOTIONS

Any transformation that moves a figure without changing its size and shape.

WARM-UP

1) Given $T(x, y) \rightarrow(x-3, y+4)$.
a) What is the image of $A(-5,7)$?
b) What is the pre-image of $D^{\prime}(10,-6)$?
2) $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$. Write the translation rule (coordinate notation) for the graphs below.

b)

WARM-UP

1) Given $T(x, y) \rightarrow(x-3, y+4)$.
a) What is the image of $A(-5,7)$? $\quad A^{\prime}(-8,11)$
b) What is the pre-image of $D^{\prime}(10,-6)$? $D(13,-10)$
2) $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$. Write the translation rule (coordinate notation) for the graphs below.
a)

$T(x, y) \rightarrow(x+6, y-3)$
b)

$\mathrm{T}(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}-5, \mathrm{y}+3)$

GEOMETRY IN THE REAL WORLD

When you work on a jigsaw puzzle, what transformation(s) can not be performed on the pieces? Explain.

REFLECTION

A transformation that creates a mirror image across a line.

REFLECTIONS MATH SHORT VIDEO

1) Watch the video about reflections.
2) Write down 5 facts about reflections.

Now, use what you learned to fill in the blanks of the cloze paragraph on

REFLECTIONS MATH SHORT VIDEO

MORE ABOUT REFLECTIONS

A reflection is a transformation that flips a figure across a line called a line of reflection . Each reflected point is the same distance from the line of reflection as its corresponding point on the pre-image, but on the opposife side of the line. So, the resulting
\qquad images of each other.

MORE ABOUT REFLECTIONS

You can reflect a figure across the following lines:

1) x-axis
2) y - $a x$ is
3) line $y=x$
4) Line $y=-x$
5) Any horizontal line
6) Any vertical line

IDENTIFY THE LINE OF REFLECTION:

$y=-2$

y-axis

Line $y=x \quad$ Line $y=-x$

COORDINATE (GENERIC) NOTATION

A way to represent a transformation using numbers, operations, and variables.

EX: REFLECT ACROSS THE X-AXIS

Reflect

Change the sign of the y.

COORDINATE (GENERIC) NOTATION

A way to represent a transformation using numbers, operations, and variables.

EX: REFLECT ACROSS THE Y-AXIS

Change the sign of the x.

COORDINATE (GENERIC) NOTATION

A way to represent a transformation using numbers, operations, and variables.

EX: REFLECT ACROSS THE LINE $Y=X$

COORDINATE (GENERIC) NOTATION

A way to represent a transformation using numbers, operations, and variables.

EX: REFLECT ACROSS THE LINE $Y=-X$

Change both signs and Swap.

TRANSFORMATION RULES

REFLECT ACROSS THE X-AXIS

$$
(x, y) \rightarrow(x,-y)
$$

Change the sign of the y-value

REFLECT ACROSS THE X-AXIS

Change the sign of y and keep the x

$$
\begin{aligned}
& \mathrm{D}(-2,4) \rightarrow \mathrm{D}^{\prime}(-2,-4) \\
& \mathrm{I}(0,-8) \rightarrow \mathrm{I}^{\prime}(0,8) \\
& \mathrm{G}(-3,5) \rightarrow \mathrm{G}^{\prime}(-3,-5)
\end{aligned}
$$

REFLECT ACROSS THE Y-AXIS

Change the sign of the x-value

REFLECT ACROSS THE Y-AXIS

Change the sign of x and keep the y

$$
\begin{aligned}
& \mathrm{C}(1,2) \rightarrow \mathrm{C}^{\prime}(-1,2) \\
& \mathrm{A}(-3,-5) \rightarrow \mathrm{A}^{\prime}(3,-5) \\
& \mathrm{T}(4,-1) \rightarrow \mathrm{T}^{\prime}(-4,-1)
\end{aligned}
$$

REFLECT ACROSS $Y=X$

$(x, y) \rightarrow(y, x)$

Swap x and y

REFLECT ACROSS $Y=X$

Swap the x with the y

$$
\begin{aligned}
& \mathrm{B}(-7,-12) \rightarrow \mathrm{B}^{\prime}(-12,-7) \\
& \mathrm{I}(8,-2) \rightarrow \mathrm{I}^{\prime}(-2,8) \\
& \mathrm{G}(9,13) \rightarrow \mathrm{G}^{\prime}(13,9)
\end{aligned}
$$

REFLECT ACROSS $Y=-X$

$$
(x, y) \rightarrow(-y,-x)
$$

Change both signs and Swap.

REFLECT ACROSS $Y=-X$

Change Both Signs and Swap
$M(13,21) \rightarrow M^{\prime}(-21,-13)$
$\mathrm{A}(-2,9) \rightarrow \mathrm{A}^{\prime}(-9,2)$
$\mathrm{N}(17,-24) \rightarrow \mathrm{N}^{\prime}(24,-17)$

HOMEWORK

COMPLETE THE TRANSLATIONS AND REFLECTIONS PRACTICE

INDEPENDENT PRACTICE

