Warm up - Solve by Taking Roots

$$
\text { 1. } \frac{1}{4}(x-6)^{2}=86 \pm 4 \sqrt{2}
$$

$$
\text { 2. } 6 x^{2}-2=-23
$$

$$
\pm \frac{i \sqrt{14}}{2}
$$

Solving by the Quadratic Formula

Quadratic Formula

$-b \pm \sqrt{b^{2}-4 a c}$
$x=$

$2 a$

$a x^{2}+b x+c=0$

How to Solve Quadratics Using the Quadratic Formula

$a x^{2}+b x+c=0$

1) Write the equation in standard form $-a x^{2}+b x+c=0$.
2) Identify a, b, c, and $b^{2}-4 a c$ (discriminant).
3) Substitute these values into the formula.:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

4) Simplify.

Question \#1

$$
x^{2}-5 x=-6
$$

Use the quadratic formula to find the zeros.

$$
\begin{aligned}
& a=1 \\
& b=-5 \\
& c=6 \\
& b^{2}-4 a c=(-5)^{2}-4(1)(6) \\
& \quad=1
\end{aligned}
$$

$$
x^{2}-5 x+6=0
$$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \boldsymbol{x}=\frac{-(-\mathbf{5}) \pm \sqrt{\mathbf{1}}}{\mathbf{2 (\mathbf { 1 })}}
\end{aligned}
$$

$$
x=\frac{5+1}{2}=3
$$

$$
x=\frac{5 \pm 1}{2}
$$

$$
x=\frac{5-1}{2}=2
$$

$$
x=2 \text { and } x=3
$$

Question \#1
Use the quadratic formula to find the y-intercepts.

$$
f(x)=x^{2}-6 x+3
$$

Question \#2

Use the quadratic formula to find the solutions.

$$
f(x)=x^{2}+9 x+10
$$

Question \#3
Use the quadratic formula to find the zeros.

$$
2 x^{2}+4=5 x
$$

Question \#4

Use the quadratic formula to find the x-intercepts.

$$
2 x^{2}-4 x=1
$$

The Discriminant

The Discriminant tells how many

 \& what type of solutions the quadratic has.

Put the quadratic in standard form first!

b

2

$b^{2}-4 a c$

\star If the discriminant is POSITIVE, then you will have $\mathbf{2}$ real roots.
\star If the discriminant is ZERO, then you will have 1 real root.
\star If the discriminant is NEGATIVE, then you will have $\underline{2}$ imaginary roots.

Determine the number \& types of roots. Example: 1

$$
\begin{aligned}
x^{2}-3 x+4 & =0 \\
b^{2}-4 a c & =(-3)^{2}-4(1)(4) \\
& =9-16
\end{aligned}
$$

$$
2 \text { |maginar) Rools }
$$

Determine the number \& type of roots. Example: 2

$$
x^{2}-4 x+4=0
$$

$$
b^{2}-4 a c=(-4)^{2}-4(1)(4)
$$

$$
=16-16
$$

$$
=0
$$

Determine the number \& type of roots. Example: 3

$$
x^{2}-5 x+4=0
$$

$$
b^{2}-4 a c=(-5)^{2}-4(1)(4)
$$

$$
=25-16
$$

$$
2 \text { Real Roots }
$$

