Warm up – Solve by Taking Roots 1. $\frac{1}{4}(x-6)^2 = 8$ $6 \pm 4\sqrt{2}$

2. $6x^2 - 2 = -23$ $i\sqrt{14}$

Solving by the Quadratic Formula

Quadratic Formula

 $b = -b \pm \sqrt{b^2 - 4ac}$ 2a $ax^2 + bx + c = 0$

How to Solve Quadratics Using the Quadratic Formula

$$ax^2 + bx + c = 0$$

Write the equation in standard form - ax² + bx + c = 0.
 Identify a, b, c, and b² - 4ac (discriminant).
 Substitute these values into the formula.:

$$x=\frac{-b\ \pm\sqrt{b^2-4ac}}{2a}$$

4) Simplify.

Question #1 $x^2 - 5x = -6$ Use the quadratic formula to find the zeros.

$$a = 1$$

 $b = -5$
 $c = 6$
 $b^2 - 4ac = (-5)^2 - 4(1)(6)$
 $= 1$

$$x^{2} - 5x + 6 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-(-5) \pm \sqrt{1}}{2(1)}$$

$$x = \frac{5 \pm 1}{2}$$

$$x = \frac{5 \pm 1}{2} = 3$$

x = 2 and x = 3

Question #1 Use the quadratic formula to find the y-intercepts.

$f(x) = x^2 - 6x + 3$

$x = 3 \pm \sqrt{6}$

Question #2 Use the quadratic formula to find the solutions.

$f(x) = x^2 + 9x + 10$

Question #3 Use the quadratic formula to find the zeros.

$2x^2 + 4 = 5x$

Question #4 Use the quadratic formula to find the x-intercepts.

 $2x^2 - 4x = 1$

The Discriminant

$b^2 - 4ac$

The Discriminant tells how many & what type of solutions the quadratic has.

Put the quadratic in standard form first!

If the discriminant is POSITIVE, then you will have <u>2 real roots.</u>

★ If the discriminant is **ZERO**, then you will have **1 real root**.

★ If the discriminant is NEGATIVE, then you will have 2 imaginary roots.

Determine the number & types of roots. Example: 1

 $x^2 - 3x + 4 = 0$

 $b^2 - 4ac = (-3)^2 - 4(1)(4)$ = 9 - 162 Imaginary Roots = -7

Determine the number & type of roots. Example: 2 $x^2 - 4x + 4 = 0$ $b^2 - 4ac = (-4)^2 - 4(1)(4)$ = 16 - 16**1 Real Root** = 0

Determine the number & type of roots. Example: 3 $x^2 - 5x + 4 = 0$ $b^2 - 4ac = (-5)^2 - 4(1)(4)$ = 25 - 162 Real Roots = 9