Common Logarithm

- A common logarithm is a logarithm that is base 10.
- When a logarithm is base 10 , we don't write the base. $\log _{10}=\log$
- We like base 10 because we can evaluate it in our calculator. (Use the LOG button.)

Evaluate with a calculator

21) $\log _{10} 10=1$

22) $2 \log _{10} 2.5=0.7959$

23) $\log _{10}(-2) \quad$ no solution

Remember this means $10^{?}=-2$

Properties of Logarithms

A.) $\log _{a} 1=0 \quad$ because $a^{0}=1$

B.) $\log _{a} a=1$ because $a^{1}=a$

$$
\text { C.) } \log _{a} \mathrm{a}^{\mathrm{x}}=\mathrm{x} \quad a^{\log _{a} x}=x
$$

Simplify

${ }_{\text {111 }} \log _{8} 8=1 \quad \log _{3} 3^{4}=4$

$$
{ }^{13} \log _{10} 10^{2}=2{ }_{19} 3^{\log _{3} \mathrm{x}}=\mathrm{x}
$$

Properties of Logarithms

$\log _{\mathrm{a}} 1=0$
because $\mathrm{a}^{0}=1$
$\log _{\mathrm{a}} \mathrm{a}=1$
because $\mathrm{a}^{1}=\mathrm{a}$
$\log _{\mathrm{a}} \mathrm{a}^{\mathrm{x}}=\mathrm{x}$
$a^{\log _{a} x}=x$

More Properties of Logarithms If $\log _{a} x=\log _{a} y$

then $x=y$

