ANGLE RELATIONSHIPS

## Parallel Lines Cut <br> by a Transversal

## Corresponding Angles

- Same side of transversal but on different parallel lines
- Non-adjacent, congruent parallel line

Equation:

## angle = angle

## Alternate Interior Angles

- Opposite sides of the transversal \& inside the parallel lines
- Non-adjacent, congruent

Equation:

## angle = angle



## Alternate Exterior Angles

- Opposite sides of the transversal \& outside the parallel lines
- Non-adjacent, congruent

Equation:
angle = angle


## Same-Side Interior Angles

- Same side of the transversal and inside the parallel lines
- Supplementary (add up to $180^{\circ}$ )


## Equation:

angle + angle $=180^{\circ}$


## Same-Side Exterior Angles

- Same side of the transversal and outside the parallel lines
- Supplementary (add up to $180^{\circ}$ )

Equation:
angle + angle $=180^{\circ}$


## Identify each angle pair.

 1. $\angle 1$ and $\angle 3 \begin{gathered}\text { corresponding } \\ \text { angles }\end{gathered}$ 2. $\angle 3$ and $\angle 6$ alternate $\begin{aligned} & \text { interior angles }\end{aligned}$ 3. $\angle 4$ and $\angle 5$ alternate $\begin{aligned} & \text { ale } \\ & \text { exterior angles }\end{aligned}$ 4. $\angle 6$ and $\angle 7$ same-side interior angles
## Example 1: Using the Corresponding Angles Postulate

Find each angle measure.
A. $\mathrm{m} \angle E C F=70^{\circ}$
$\mathrm{m} \angle D C E$

B. $m \angle D C E \quad 4 x+22=5 x$

$$
\begin{aligned}
-4 x & -4 x \\
x & =22
\end{aligned}
$$

Example 1
Find $\mathrm{m} \angle Q R S$.

$$
\begin{array}{r}
118+x=180 \\
-118 \\
\hline x=62^{\circ}
\end{array}
$$



Example 2: Finding Angle Measures
Find each angle measure.
A. $m \angle E D G=75^{\circ}$

B. $\mathbf{m} \angle \mathbf{B D G}=115^{\circ}$

$$
\begin{aligned}
x & -30 \\
+30 & +30 \\
x & =1150
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& \text { Find } m \angle A B D \text {. } \\
& \begin{aligned}
24+10 & =3 x-15 \\
-2 x & -2 x
\end{aligned} \\
& \begin{array}{r}
10=x-1 / 8 \\
+15 \\
\hline
\end{array} \\
& x=25 \\
& 2 x+10=2(25)+10 \\
& =60^{\circ}
\end{aligned}
$$

