

1. ∠ARD =

2. ∠ARB =

Warm up Find the missing measures:

1. $\angle ARD = 130^{\circ}$

2. ∠ARB = **120°**

Inscribed Angle: An angle whose vertex is on the circle and whose sides are chords of the circle

UNIT 4A: CIRCLES

Angles with Vertex On the Circle

Vertex is **ON** the Circle

To find the measure of an angle with a vertex on the circle, divide the intercepted arc by 2...

What is the measure of the *angle*?

EX 6:

What is the measure of the *angle*?

EX 6:

 $x = 35^{\circ}$

x = 78°

x = 107°

To find the measure of an intercepted arc, multiply the angle by 2...

Intercepted Arc = 2 • Angle

What is the measure of the *intercepted angle*?

EX 8:

EX 9 :

What is the measure of the *intercepted angle*?

EX 8:

EX 9 :

x = 110°

x = 140°

EX 12:

EX 14 :

x = 33°

x = 29°

x = 150°

EX 15:

EX 17 :

(You may assume DF is a diameter.)

EX 15:

EX 17 :

(You may assume DF is a diameter.)

x = 110°

x = 224°

 $x = 60^{\circ}$

What is the measure of the *intercepted angle*?

EX 18:

Example 19:

In $\bigcirc J$, $m \angle 3 = 5x$ and $m \angle 4 = 2x + 9$. Find the value of x. Q

T

D

5x = 2x+9

Geometry: ANGLES ON THE CIRCLE PRACTICE

1. 46° x°

2.

Geometry: ANGLES ON THE CIRCLE PRACTICE

Complete #s 1-8 of the Practice sheet. Enter answers in FORMS:

https://forms.office.com/Pages/ResponsePage.aspx ?id=-x30L5-ROEmquMR_D8kYLWbKo50joN1FnNo7u2GDUMNU RVU4SEoxMVIzNUhPTVRQSzA3U0tZQVNCSy4u

1st/2nd Block

If all the vertices of a polygon touch the edge of the circle, then the polygon is INSCRIBED and the circle is CIRCUMSCRIBED.

A circle can be circumscribed around a quadrilateral if and only if its opposite angles are

supplementary.

$m \angle A + m \angle C = 180$ $m \angle B + m \angle D = 180$

If a right triangle is inscribed in a circle then the hypotenuse is the diameter of the circle **AND** the angle

AND the angle opposite the diameter is a right angle.

Example:

In \odot K, \overline{GH} is a diameter and $m \angle GNH = 4x - 14$. Find the value of x.

<u>HINT</u>: GH is also the <u>hypotenuse</u>. Therefore, angle GNH is a <u>right</u> angle.

Example 7

⊙K is a right triangle. In ⊙K, $m \angle 1 = 6x - 5$ and $m \angle 2 = 3x - 4$. Find the value of x.

<u>HINT</u>: Angle GNH is a <u>right</u> angle. Therefore, angles G & H are <u>complementary</u>.