Warm up

Find the missing measures:

Warm up

Find the missing measures:

$$
\text { 1. } \angle \mathrm{ARD}=130^{\circ}
$$

2. $\angle \mathrm{ARB}=120^{\circ}$
 3. $\widehat{\mathrm{ABD}}=230^{\circ}$

Inscribed Angle:

 An angle whose vertex is on the circle and whose sides are chords of the circle
UNIT 4A: CIRCLES

Angles with Vertex On the Circle

Vertex is ON the Circle

To find the measure of an angle with a vertex on the

 circle, divide the intercepted arc by $2 . .$.$$
\text { Angle }=\frac{\text { intercepted arc }}{2}
$$

Ex. 1: Find $m \angle 1$.

$m \angle 1=62^{\circ}$

Ex. 2: \quad Find $m \angle 1$.

$m \angle 1=\frac{78}{2}$

$m \angle 1=39^{\circ}$

Ex. 3: Find $m \angle 1$.

$m \angle 1=\frac{252}{2}$

$$
m \angle 1=126^{\circ}
$$

What is the measure of the angle?

EX4:

EX 5:

 EX 6:

What is the measure of the angle?

EX4:

$\mathrm{x}=35^{\circ}$

EX 5:

$\mathrm{x}=78^{\circ}$

EX 6:

$x=107^{\circ}$

To find the measure of an intercepted arc, multiply the angle by $2 . .$.

Intercepted Arc = 2•Angle

EX 7: Find $\widehat{A D C}$.

$\overline{A D C}=146^{\circ}$

What is the measure of the intercepted angle?

EX 8:

EX 9 :

What is the measure of the intercepted angle?

EX 8:

$x=110^{\circ}$

EX 9 :

$$
x=140^{\circ}
$$

$$
112^{\circ}
$$

PUTTING IT ALL TOGETHER!

EX 12:

EX 13 :

EX 14 :

PUTTING IT ALL TOGETHER!

EX 12:

$x=33^{\circ}$

EX 13 :

$x=29^{\circ}$

EX 14 :

$x=150^{\circ}$

PUTTING IT ALL TOGETHER!

EX 15:

EX 16 :

EX 17 :

(You may assume DF is a diameter.)

PUTTING IT ALL TOGETHER!

$x=110^{\circ}$

EX 16 :

$x=224^{\circ}$

EX 17 :

(You may assume DF is a diameter.)

If two inscribed angles intercept the same arc, then they are congruent.

$\angle A B F \cong \angle A C F$

What is the measure of the intercepted angle?

EX 18:

$$
x=29^{\circ}
$$

Example 19:

In $\odot J, m \angle 3=5 x$ and $m \angle 4=2 x+9$.

 Find the value of x.$$
5 x=2 x+9
$$

$$
x=3
$$

Geometry: ANGLES ON THE CIRCLE PR ACTICE

1.

2.

$\mathrm{x}=$ \qquad $y=$ \qquad
$\mathrm{x}=$ \qquad
7.

$\mathrm{x}=$ \qquad $y=$ \qquad $\mathrm{x}=$ \qquad $y=$ \qquad
8.

9.

Geometry: ANGLES ON THE CIRCLE PRACTICE

Complete \#s 1-8 of the Practice sheet. Enter answers in FORMS:
httpsa//forms_office,com/Pages/ResponsePage_aspx Pid=-x30L5-
ROEmquMR_D8kYLWbKo50joN1FnNo7u2GDUMNU RVU4SEOXMVIzNUhPTVRQSzA3UOtZQVNCSy4u

$1^{\text {st }} / 2^{\text {nd }} \quad$ Block

If all the vertices of a polygon touch the edge of the circle, then the polygon is INSCRIBED and the circle is CIRCUMSCRIBED.

A circle can be circumscribed around a quadrilateral if and only if its opposite angles are

supplementary.

$m \angle A+m \angle C=180$
$m \angle B+m \angle D=180$

Example: Find y and z.

$110+y=180$
 $y=70$

$$
\begin{gathered}
z+85=180 \\
z=95
\end{gathered}
$$

If a right triangle is inscribed in a circle then the hypotenuse is the diameter of the circle

AND the angle opposite the diameter is a right angle.

Example:

In $\odot K, \overline{G H}$ is a diameter and $m \angle G N H=4 x-14$. Find the value of x.

HINT: GH is also the hypotenuse. Therefore, angle GNH is a right angle.

Example 7

$\odot K$ is a right triangle. In $\odot K, m \angle 1=6 x-5$ and $m \angle 2=3 x-4$. Find the value of x.

HINT: Angle GNH is a right angle. Therefore, angles G \& H are complementary:

