Compound Probability

Independent v. Dependent Events

Independent Events

- Two events A and B, are independent if the fact that A occurs does not affect the probability of B occurring.
- Examples- Landing on heads from two different coins or rolling a 4 on a die, then rolling a 3 on a second roll of the die.
- Probability of A and B occurring:

$$
P(A \text { and } B)=P(A) * P(B)
$$

Experiment 1

- A coin is tossed and a 6-sided die is rolled. Find the probability of landing on the head side of the coin and rolling a 3 on the die.
-P $($ head $)=1 / 2$
$-P(3)=1 / 6$
-P (head and 3$)=P($ head $) * P(3)$

$$
\begin{aligned}
& =1 / 2 * 1 / 6 \\
& =1 / 12
\end{aligned}
$$

Experiment 2

- A card is chosen at random from a deck of 52 cards. It is then replaced and a second card is chosen. What is the probability of choosing a jack and an eight?
$\square P($ jack $)=4 / 52$
$\cdot P(8)=4 / 52$
$\square P($ jack and 8$)=4 / 52 * 4 / 52$

$$
=1 / 169
$$

Experiment 3

- A jar contains three red, five green, two blue and six yellow marbles. A marble is chosen at random from the jar. After replacing it, a second marble is chosen. What is the probability of choosing a green and a yellow marble?
$-P($ green $)=5 / 16$
$\square P($ yellow $)=6 / 16$
$\square P($ green and yellow $)=P($ green $) \times \mathbb{P}($ yellow $)$

$$
=15 / 128
$$

Experiment 4

- A school survey found that 9 out of 10 students like pizza. If three students are chosen at random with replacement, what is the probability that all three students like pizza?
- $P($ student 1 likes pizza $)=9 / 10$
- $P($ student 2 likes pizza) $=9 / 10$
- $P($ student 3 likes pizza $)=9 / 10$

- P (student 1 and student 2 and student 3 like
pizza) $=9 / 10 \times 9 / 10 \times 9 / 10=729 / 1000$

Dependent Events

- Two events A and B, are dependent if the fact that A occurs affects the probability of B occurring.
- Examples- Picking a blue marble and then picking another blue marble if I don't replace the first one.
- Probability of A and B occurring:
$P(A$ and $B)=P(A) * P(B \mid A)$

Experiment 1

- A jar contains three red, five green, two blue and six yellow marbles. A marble is chosen at random from the jar. A second marble is chosen without replacing the first one. What is the probability of choosing a green and a yellow marble?
$a P($ green $)=5 / 16$
-P $($ yellow given green $)=6 / 15$
$-\mathrm{P}($ green and then yellow $)=\mathrm{P}($ green $) \times \mathrm{P}($ yellow $)$

$$
=1 / 8
$$

Experiment 2

- An aquarium contains 6 male goldfish and 4 female goldfish. You randomly select a fish from the tank, do not replace it, and then randomly select a second fish. What is the probability that both fish are male?
$\cdot P($ male $)=6 / 10$
$\square P($ male given male $)=5 / 9$
$\square P($ male and then, male $)=1 / 3$

Experiment 3

- A random sample of parts coming off a machine is done by an inspector. He found that 5 out of 100 parts are bad on average. If he were to do a new sample, what is the probability that he picks a bad part and then, picks another bad part if he doesn't replace the first?
$-P(b a d)=5 / 100$
-P $($ bad given bad $)=4 / 99$
$\square \mathrm{P}(\mathrm{bad}$ and then, bad $)=1 / 495$

