

EQ: How do you use properties of exponents to simplify algebraic expressions?

Properties of Exponents - GO

Exponential Functions

EQ: What is an exponential function?
EQ: How do exponential functions relate to real-world phenomena?

Exponential Functions

An exponential function with a base b is written $f(x)=a b^{x}$, where b is a positive number other than 1.

This is easy to identify because the variable is in the place of (or part of) the exponent.

Exponential Growth

An exponential growth function can be written in the form of $y=a b^{\star}$ where $\mathrm{a}>0$ (positive) and $\mathrm{b}>1$.
0. The function increases from $(-\infty,+\infty)$

When looking at real-world data, we are often given the percent rate of growth (r).

We can then make our own function by using the formula
a is the starting value
$y=a(1+r)^{x}$
r is the percent growth rate (changed to a decimal)
x is time

Exponential Decay

An exponential decay function can be written in the form of

$$
\mathrm{y}=\mathrm{ab}^{\mathrm{x}} \text { where } \mathrm{a}>0 \text { (positive) and } 0<\mathrm{b}<1 \text {. }
$$

The graph decreases from $(-\infty,+\infty)$.

- When looking at real-world data, we are often given the percent rate that it decreases (r).

We can then make our own function by using the formula a is the starting value
r is the percent decrease/decay rate
(changed to a decimal)
X is time

Example 1:

You have purchased a car for $\$ 19,550$. This car will depreciate at a rate of 12% each year.
Is this an example of a growth or decay?
Write a formula to represent the amount the car is worth after x number of years.
What is the value of the car after 2 years?

Example 2:

In the year 2005, a small town had a population of 15,000 people. Since, then it is growing at a rate of 3% each year.

Is this an example of a growth or decay?
Write a formula that represents the population after x years.

What is the population after 7 years?

Graphing Exponential Functions

EQ:
How do transformations of exponential equations affect the function analytically and graphically?

Troy and Gabriella are students at East High School, which has a population of 2374 students. They met at registration and immediately fell in love. However,
 their relationship was doomed to fail. By the first day of school they were both dating someone new. By day two both of those relationships had failed and each person involved had found someone new. This unfortunate breakup pattern continued each day until everyone at the school was in a relationship. The breakups were so traumatic that the students involved only paired up with those who had not yet been in a relationship.

$y=3^{x}$				
x $f(x)$ -1 $1 / 3$ 0 1 1 3 2 9	x $f(x)$ -3 $1 / 3$ -2 1 -1 3 0 9	\quad	x	$f(x)$
:---:	:---:			
0	$1 / 3$			
1	1			
2	3			
3	9			

$y=3^{x}$

x	$f(x)$
-1	$1 / 3$
0	1
1	3
2	9

$y=3^{x}+2$

x	$f(x)$
-1	$2 \frac{1}{3}$
0	3
1	5
2	10

$$
y=3^{x}-1
$$

x	$f(x)$
-1	$-2 / 3$
0	0
1	2
2	8

Asymptotes...
What is happening to the graph of $y=3^{x}$
as it gets closer to the x-axis?
Does it eventually cross and continue below the axis?
Let's look at the table...
What happens to the y-value as
 the x-value decreases?

When will we reach zero?
This is why there is an asymptote at $y=0$.
Asymptote: A straight line that a curve approaches more and more closely but never touches as the curve goes off to infinity in one direction.

We draw the asymptote with a dotted/dashed line.

x	y
2	9
1	3
0	1
-1	$1 / 3$
-2	$1 / 9$
-3	$1 / 27$
-4	$1 / 81$

Step 1:
Identify left/right translations.

$y=a b^{(x+h)}$ left h units

$y=a b^{(x-h)}$ right h units

Graphing Exponential Functions

Step 2:
Identify up/down translations.
$\mathrm{Y}=\mathrm{ab}^{\mathrm{x}}+\mathrm{k}$ up k units
$\mathrm{Y}=\mathrm{ab}^{\mathrm{x}}-\mathrm{k}$ downkunits

Step 3:
Identify stretch/shrink/ reflections.

Step 4:
Take common point
$(0,1)$ and translations
from steps 1 - 3 and
locate \& plot the point
in its new location.

Step 5:
Identify and draw in asymptote.

Step 6:
Identify and draw in the growth/decay exponential curve.

Examples:

Characteristics of Graph

Domain: $(-\infty,+\infty)$
Range: $(3,+\infty)$
Intercept(s): (0, 3.5)
End behaviors: Rises to left

Falls to the right
Asymptote: y=3

