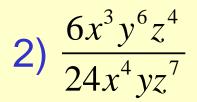


Simplify (2 pts each): 1) $(4x^6y^3)^4$



4.2 Composition of Functions

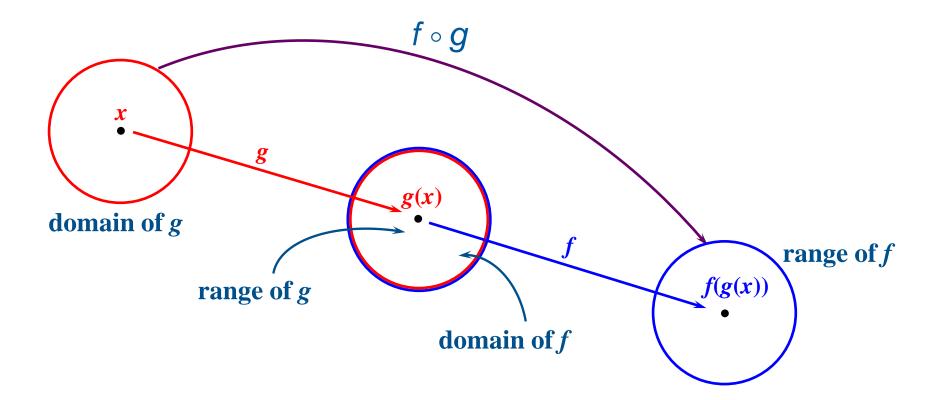
Objective

 \boxtimes To form and evaluate composite functions.

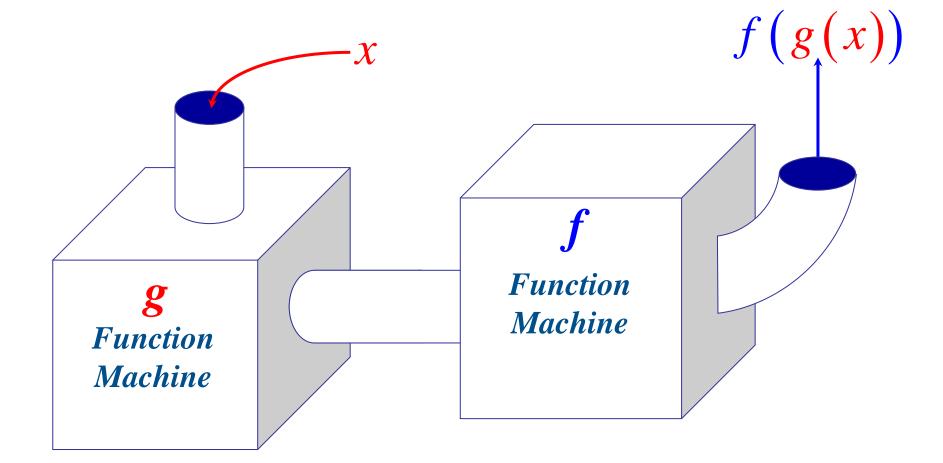
Composition of functions

- Solution Soluti Solution Solution Solution Solution Solution Solution Solut
- Solven two functions *f* and *g*, the **composite function** $f \circ g$ is defined by $(f \circ g)(x) = f(g(x))$ and is read "*f* of *g* of *x*."

A composite function



A different way to look at it...



Example 1 \boxtimes Evaluate $(f \circ g)(x)$ and $(g \circ f)(x)$: rightarrow f(x) = x - 3 $g(f(x)) = 2(x - 3)^2 - 1$ $=2(x^2-6x+9)-1$ $> g(x) = 2x^2 - 1$ $=2x^{2}-12x+18-1$ $(f \circ g)(x) = 2x^2 - 4$ $(g \circ f)(x) = 2x^2 - 12x + 17$

You can see that function composition is not commutative!

Example 2 \boxtimes Evaluate $(f \circ g)(x)$ and $(g \circ f)(x)$: > $f(x) = 2x^3$ $g(f(x)) = (2x^3)^{-1}$ > $g(x) = x^{-1}$ $2x^3$ $(f \circ g)(x) = \frac{2}{x^3}$ $(g \circ f)(x) = \frac{1}{2x^3}$

Your turn

 \boxtimes Evaluate $(f \circ g)(x)$ and $(g \circ f)(x)$:

$$f(x) = 3x^2$$

$$g(x) = x + 5$$

Summary...

I Section Section Section

Perform function in innermost parentheses first