Unit 3 Polynomial Functions

Characteristics of Functions

Essential Questions

- 1. What is interval notation?
- 2. What is the domain & range of a function?
- 3. When is a function increasing, decreasing, & constant?
- 4. Where are the max & min of a function?

Let's Review!

When writing interval notation, remember...

- when you want include use a bracket [
- when you want to <u>exclude</u> use a parenthesis (

INTERVAL NOTATION SYMBOLS

< or >: Use Parentheses

≤ or ≥ : Use Brackets

+∞ or -∞: Use Parentheses

ON YOUR OWN

< or >: Use Parentheses

 \leq or \geq : Use Brackets

 $+\infty$ or $-\infty$: Use Parentheses

-**OO** -9 -8 -7 -6 -5 -4 -3 -2 -1 **0** 1 2 3 4 5 6 7 8 9 + **+OO**

ON YOUR OWN

 \leq or \geq : Use Brackets

-

 $+\infty$ or $-\infty$: Use Parentheses

$$\circ -9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 8 9 + + \circ$$

$$(-\infty, -2] U(0, 2) U(4, +\infty)$$

(-∞, 3]

Domain (x)

Domain is all the **inputs** of a function (<u>**x-values**</u>)

Domain is always ALL REAL NUMBERS! $(-\infty,\infty)$

Remember that when you **read domain** on a graph, you read it from **LEFT to RIGHT**!

How do you find the **DOMAIN** of a graphed function? **Read the graph from left to right. Use x-values to describe where the graph begins and where the graph ends.**

domain:
$$(-\infty, +\infty)$$

Intervals of Increase and Decrease Remember that a function is **increasing** on an **interval** if the function values **increase** as the input values **increase** within that **interval**.

Similarly, a function is **decreasing** on an **interval** if the function values **decrease** as the input values **increase** over that **interval**.

Use x-values to define intervals of increase and decrease.

Read the graph from left to the right.

Intervals of Increase/Decrease

Points of inflection are the points on a graph where the direction changes.

Increasing to decreasing

Or

Decreasing to increasing

Remember to draw a line through your point of inflection and identify the xvalue of that line. This will help you identify your intervals!

Intervals of Increase/Decrease

How do you find the INTERVALS OF INCREASE OR DECREASE of a graphed function?

Read the graph from left to right. Draw vertical lines at the beginning of the graph, end of the graph and inflection points.

Interval of increase: $(-\infty, -1) U (2, +\infty)$ Interval of decrease: (-1, 2)

GUIDED PRACTICE

Exit Ticket

Identify the domain of the function. Determine the intervals which the function domain is increasing and decreasing.

Domain (x)
$$(-\infty, +\infty)$$

Increasing interval(s): $(-2, 0) U (2, +\infty)$ Decreasing interval(s): $(-\infty, -2) U (0, 2)$

