

TODAY: basic terminology of polynomials

II. POLYNOMIALS:

A. A polynomial is the SUM or Difference of monomials.
B. An example of a polynomial in one variable, x, would be

$$
x^{3}+6 x^{2}+12 x+8
$$

C. How many MONOMIALS are there in the above polynomial?

$$
4
$$

III. The highest exponent in the polynomial determines the DEGREE OFA POLYNOMIAL in one variable.

A. Example: The degree of $-7 x+9-4 x^{2}$ is $\underline{2}$ because $\underline{2}$ is the largest exponent in the polynomial.
B. Example: Find the degree of the following polynomial: $\mathrm{x}^{4}+6 \mathrm{x}^{3}+7 \mathrm{x}^{5}+12 \mathrm{x}$

Not $12 \rightarrow 5$

IV. STANDARD FORM

A. The terms of a polynomial are in STANDARD FORM if they are ordered from left to right in __Descending_ order; which means from the greatest _ exponent to the least.
B. To write a polynomial in Standard Form, arrange the terms of the polynomial in Descending_order according to the exponents of the variables.

IV. STANDARD FORM

C. Example: Write $9+x^{\prime}-4 x^{3}$ in standard form.

$$
-4 x^{3}+x+9
$$

D. Example: Write $3 x^{2}-2+4 x-5 x^{3}$ in standard form.

$$
-5 x^{3}+3 x^{2}+4 x-2
$$

V. Some polynomials have SPECIAL NAMES that are determined by the following:
A. Their exponent or
B. Their Total \# of terms
\# OF TERMS
1 term: MONOMIAL
2 terms: BINOMIAL
3 terms: TRINOMIAL
4 + terms: POLYNOMIAL

DEGREE
$1^{\text {ST }}$: LINEAR
$2^{\text {ND }}:$ QUADRATIC
$3^{\mathrm{RD}}:$ CUBIC
$4^{\text {TH }}$: QUARTIC
$5^{\text {TH: }}$ QUINTIC

